Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A Feasibility Study
نویسندگان
چکیده
Deep Neural Networks (DNNs) are very popular these days, and are the subject of a very intense investigation. A DNN is made by layers of internal units (or neurons), each of which computes an affine combination of the output of the units in the previous layer, applies a nonlinear operator, and outputs the corresponding value (also known as activation). A commonly-used nonlinear operator is the so-called rectified linear unit (ReLU), whose output is just the maximum between its input value and zero. In this (and other similar cases like max pooling, where the max operation involves more than one input value), one can model the DNN as a 0-1 Mixed Integer Linear Program (0-1 MILP) where the continuous variables correspond to the output values of each unit, and a binary variable is associated with each ReLU to model its yes/no nature. In this paper we discuss the peculiarity of this kind of 0-1 MILP models, and describe an effective bound-tightening technique intended to ease its solution. We also present possible applications of the 0-1 MILP model arising in feature visualization and in the construction of adversarial examples. Preliminary computational results are reported, aimed at investigating (on small DNNs) the computational performance of a state-of-the-art MILP solver when applied to a known test case, namely, hand-written digit recognition.
منابع مشابه
Feasibility study of presenting a dynamic stochastic model based on mixed integer second-order conic programming to solve optimal distribution network reconfiguration in the presence of resources and demand-side management
Nowadays, with the use of devices such as fossil distributed generation and renewable energy resources and energy storage systems that are operated at the level of distribution networks, the problem of optimal reconfiguration has faced major challenges, so any change in the power of this resources can have different results in reconfiguration. Similarly, load changes during the day can lead to ...
متن کاملTen Years of Feasibility Pump and Counting
The Feasibility Pump (fp) is probably the best known primal heuristic for mixed integer programming. The original work by Fischetti, Glover, and Lodi [24], which introduced the heuristic for 0-1 mixed-integer linear programs, has been succeeded by more than twenty follow-up publications which improve the performance of the fp and extend it to other problem classes. Year 2015 was the tenth anniv...
متن کاملOutput Range Analysis for Deep Feedforward Neural Networks
Given a neural network (NN) and a set of possible inputs to the network described by polyhedral constraints, we aim to compute a safe over-approximation of the set of possible output values. This operation is a fundamental primitive enabling the formal analysis of neural networks that are extensively used in a variety of machine learning tasks such as perception and control of autonomous system...
متن کاملA Feasibility Pump for mixed integer nonlinear programs
Abstract We present an algorithm for finding a feasible solution to a convex mixed integer nonlinear program. This algorithm, called Feasibility Pump, alternates between solving nonlinear programs and mixed integer linear programs. We also discuss how the algorithm can be iterated so as to improve the first solution it finds, as well as its integration within an outer approximation scheme. We r...
متن کاملOutput Range Analysis for Deep Neural Networks
Deep neural networks (NN) are extensively used for machine learning tasks such as image classification, perception and control of autonomous systems. Increasingly, these deep NNs are also been deployed in high-assurance applications. Thus, there is a pressing need for developing techniques to verify neural networks to check whether certain user-expected properties are satisfied. In this paper, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.06174 شماره
صفحات -
تاریخ انتشار 2017